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ABSTRACT
In this paper we address the problem of differentiating be-
tween malignant and benign tumors based on their appearance
in the CC and MLO mammography views. Classification of
clustered breast microcalcifications into benign and malig-
nant categories is an extremely challenging task for comput-
erized algorithms and expert radiologists alike. We describe
a deep-learning classification method that is based on two
view-level decisions, implemented by two neural networks,
followed by a single-neuron layer that combines the view-
level decisions into a global decision that mimics the biopsy
results. Our method is evaluated on a large multi-view dataset
extracted from the standardized digital database for screening
mammography (DDSM). Experimental results show that our
network structure significantly improves on previously sug-
gested methods.

Index Terms— Mammography, Microcalcifications,
multi-view analysis, deep-learning, Computer-aided diag-
nosis (CADx)

1. INTRODUCTION

A screening mammographic examination usually consists of
four images, corresponding to each breast scanned in two
views: the mediolateral oblique (MLO) view and the cranio-
caudal (CC) view. The MLO projection is taken in a 45◦ angle
and shows part of the pectoral muscle. The CC projection is
a top-down view of the breast. Both views are included in the
diagnostic procedure. When reading mammograms, radiol-
ogists judge whether or not a malignant lesion is present by
examining both views and breasts. In an expert diagnosis pro-
cedure, the expert looks at each of the views separately, and
delivers one final assessment. When a radiologist does not
observe a lesion in both views this can influence interpreta-
tion and decision making. Recent studies (e.g. [1] [2] [3] [4])
have demonstrated the superior performance of a multi-view
CADx system over its single-view counterpart. These studies
have mainly addressed the problem of mammography analy-
sis in the presence of masses. The main focus of most pre-
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vious multi-view methods was to improve the localized de-
tection of breast cancer or to build extended feature sets using
both views. In this study we address the problem of mammog-
raphy analysis in the presence of micro-calcifications (MC).
In this case the detection is mainly based on texture features
and it is not useful to find correspondence between MC clus-
ters in different views. A recent work [5] proposed multi-
view modeling based on the EM algorithm with a logistic-
regression view-level decision. We compare our algorithm to
that work and show that we achieve significantly better re-
sults.

Our study is based on a large number of cases from the
DDSM [6], the largest public mammogram database avail-
able. The DDSM is a labeled dataset that can be used to train
an automatic system. It contains the MCs location in each of
the two views marked by experts. We also have the biopsy
results, whether the abnormities were benign or malignant.
However, we do not have direct information as to whether
there was an explicit indication of malignant MCs from each
of the views. We took all the cases from the DDSM dataset
with both CC and MLO views. Experiments were performed
on 1410 images consisting of 705 pairs of CC+MLO views
extracted from the DDSM dataset.

Many studies have examined the task of classifying MC
clusters into benign or malignant. However, most studies have
used different datasets [7] [8] [9], thus making it difficult to
carry out a comparison. Furthermore, most studies have em-
ployed smaller datasets than shown here. Only a few studies
have used a large number of MC cases from the DDSM along
with texture features [10] [11] [12]. In Section 3.2 we com-
pare the results of our algorithm to those obtained in these
studies.

In this study we explicitly take into account the two-view
structure of the problem by constructing a suitable neural-
network architecture. Experimental results on the DDSM
dataset show that this approach significantly outperforms
previously suggested methods.

2. MULTI-VIEW NEURAL NETWORKS

In this study we apply the deep learning paradigm to the task
of automatic classification of breast microcalcifications based
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Fig. 1: A diagram of the standard NN classification model. A
concatenation of CC and MLO views is used as input to a NN
classifier that produces the benign/malignant decision.

on two mammography views. The DDSM labeled dataset is
used to train the classifier. The straightforward way to ap-
ply a neural network (NN) is to extract features from the CC
views and features from the MLO view. Then we train a neu-
ral network using the concatenated features as input and the
biopsy result as binary output. This approach is illustrated in
Fig. 1. There is, however, a structure specific to this prob-
lem that is not explicitly modeled by this standard neural net-
work solution. The provided biopsy result is not always com-
pletely aligned with the image-level diagnosis. Furthermore,
a biopsy-based malignant decision may be reflected in only
one of these views. Given these drawbacks of standard NN,
we suggest a NN architecture that is tailored to the problem
of multi-view MC detection which is indirectly supervised by
biopsy results. Our approach is based on allocating a sepa-
rate NN for each view and then combining the view-level soft
decisions in a non-linear way.

Assume that for each patient we have feature vectors xcc
and xmlo extracted from the two mammography views, CC
and MLO, respectively. The CC feature vector xcc is used
as input to a neural network NNcc with a parameter-set wcc.
Let pcc be the probabilistic output of the classifier NNcc that
provides a CC view-level benign/malignant decision (we use
the convention 0-benign and 1-malignant). Let ycc ∈ {0, 1}
be the binary random variable that represents the decision
whether an MC cluster is benign or malignant based only on
the CC view, i.e., p(ycc = 1|xcc;wcc) = pcc. In a similar way
xmlo serves as input to NNmlo and pmlo is the soft decision
based on the MLO view.

We next integrate the view-level decisions into a unified
patient-level decision that mimics the biopsy test results. We
take the view-level outputs pcc and pmlo and use them as input
to another layer consisting of a single neuron with a sigmoid
activation function:

p(z = 1|xcc, xmlo) = σ(pcc + pmlo − 1) (1)

such that σ(u) = 1
1+exp(−u) is the sigmoid function. The

binary r.v. z represents the biopsy-based decision. It can be
easily verified from Eq. (1) that p(z = 1|xcc, xmlo) > 0.5
if and only if (pcc + pmlo)/2 > 0.5. Hence, the network’s

NNcc

xcc

NNmlo

xmlo

wcc wmlo

pcc pmlo

σ(pcc + pmlo − 1)

benign/malignant decision

Fig. 2: A diagram of the multi-view NN (MV-NN) classifica-
tion model. The CC and MLO views are used as input to NN
classifiers that produce view-level probabilities pcc and pmlo.
These are used as input to a single-neuron layer that produces
the final decision.

final hard decision is obtained by averaging the two view-
level decisions. We dub this model the Multi-View Neural
Network (MV-NN). It is illustrated in Fig. 2.

Another way to combine the views is simply by averaging
the decisions, i.e.:

p(z = 1|xcc, xmlo) =
pcc + pmlo

2
. (2)

We have found, however, that adding non-linearity to the
merging process provides better results.

The MV-NN model parameters can be learned from a la-
beled training data. Assume we are given n (CC, MLO) pairs
of feature vectors:

(x1,cc, x1,mlo), ..., (xn,cc, xn,mlo)

with their corresponding binary labels z1, ..., zn ∈ {0, 1}.
The log-likelihood function of the model parameters is:

S(wcc, wmlo) =

n∑
t=1

log p(zt|xt,cc, xt,mlo;wcc, wmlo) (3)

Substituting Eq. (1) in Eq. (3) we obtain:

S(wcc, wmlo) =

n∑
t=1

log σ((2zt−1)(pt,cc+pt,mlo−1)) (4)

such that pt,cc = p(yt,cc|xt,cc, wcc) is the output of the CC
neural network and pt,mlo is defined in a similar way. The
back-propagation algorithm splits the classification error be-
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tween the two views as follows:

∂S

∂wcc
=

n∑
t=1

(zt − ẑt)
∂pt,cc
∂wcc

∂S

∂wmlo
=

n∑
t=1

(zt − ẑt)
∂pt,mlo

∂wmlo

(5)

such that ẑt = p(zt|xt,cc, xt,mlo;wcc, wmlo) is computed in
the feed-forward step.

Our approach which is based on learning two networks in
parallel resembles the concept of Siamese nets that was first
introduced to solve signature verification as an image match-
ing problem [13] [14] and has become popular in recent years.
A Siamese neural network consists of twin networks which
accept distinct inputs but are joined by an energy function
at the final layer. This function computes some metric be-
tween the highest-level feature representation on each side.
In a Siamese network, as the name implies, the parameters
between the twin networks are tied. In our network the CC
and MLO views are different and, therefore, the view-level
networks are not the same. Another major difference is that
Siamese networks take pairs of input vectors and minimize
or maximize a distance depending on whether a pair comes
from the same or different classes. In our approach the cost
function aims to integrate knowledge from different sources.

2.1. Dataset and features

This study is based on the DDSM dataset [6] which provides
the highest available number of annotated mammograms with
a biopsy-proven diagnosis. The contours of the lesions are
provided by a chain code which we used to extract irregu-
lar shaped ROIs. We extracted ROIs that contained clusters
of MCs for which a proven pathology was found. We chose
patients in the DDSM dataset that had both CC and MLO
views in order to test our model. Our dataset was comprised
of 1410 clusters (705 of CC, and 705 of MLO), of which 372
were benign and 333 were malignant. Feature vectors xcc and
xmlo were extracted from the CC and MLO views, respec-
tively. Following [5], the features were extracted from the
Curvelet coefficients at intermediate scales (in our study, two
scales), and included the four features mentioned in [15] for
each scale, with three additional features: entropy, skewness
and kurtosis. Overall, each extracted ROI was represented by
14 features. Many other texture features that can be used for
mammography analysis have been reported in the literature,
e.g. GLCM [16], (GLRLM) [17] [18], Gabor filters [19] and
features that are based on the wavelet transform. Using the
Curvelet features we obtained the best results. Due to lack
of space and since this is not the focus of this work, we do
not describe here classification results based on the alterna-
tive features.

2.2. Training procedure

Using the feature described in Section 2.1, the size of the in-
put feature set is 28 (14 features for each view). We used a
two hidden layer NN comprised of 24 neurons each (12 neu-
rons for each view). Overall, the number of parameters (linear
coefficients and bias terms) for each view is 15 × 12 + 13 ×
12 + 13. To learn the network weights, we used the gradient
descent algorithm (since the dataset size is small there is no
need here for stochastic optimization based on mini-batchs).
We used an adaptive learning rate combined with momentum.
The learning rate was initialized to 0.01. It was then increased
in each epoch by multiplying the learning rate by 1.05 if the
new likelihood exceeds the old likelihood score by more than
4%. Otherwise, the learning rate is kept. If the likelihood
score was less than the old likelihood, the learning rate was
decreased by multiplying the learning rate by 0.7. The mo-
mentum was set to 0.5. To prevent overfitting the number of
maximal training epochs was set to 100. The parameters of
sub-network NNcc were initialized by training a NN that has
CC features as input and the biopsy labels as output. The
MLO sub-network was initialized in a similar way.

3. EXPERIMENTAL EVALUATION

3.1. Compared methods

We compared the proposed MV-NN method to logistic regres-
sion (LR), SVM, and neural network classifiers. We imple-
ment these classifiers on each view separately and on a con-
catenation of the CC and MLO features. To conduct a fair
comparison we chose a neural network architecture similar to
the one we used in our model (2 hidden layers each comprised
of 24 neurons).

We also implemented two classifiers that explicitly take
the multi-view structure of the problem into account. The
first one is the EM-LR algorithm [5]. It is based on two view-
level logistic regression classifiers that are combined by the
EM algorithm. We also introduced an extended version of the
EM-LR algorithm where the view-level logistic-regression is
replaced by a view-level neural network (we used the same
network architecture described above). We denote this ex-
tension EM-NN. One drawback of these methods is that both
NN (used for the view-level) and EM (used for combining the
views) are iterative methods and it is not apparent what the op-
timal scheduling for the iterations of the two methods should
be. At each M-step of the EM-iteration we need to train a
NN. In contrast, in the MV-NN approach the two view-level
decisions and the two-view integration are done by a single
NN. Hence, given the current practice of NN training, the pa-
rameter training of the MV-NN is easily done.
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Table 1: Classification results (benign vs. malignant) for
breast tissues.

method CC MLO CC+MLO

Accuracy

LR 61.3 61.0 61.7
SVM 61.8 60.8 64.4
EM-LR - - 69.5
NN 76.6 77.3 77.7
EM-NN - - 78.3
MV-NN - - 78.7

AUC

LR 0.71 0.71 0.71
SVM 0.72 0.72 0.73
EM-LR - - 0.75
NN 0.80 0.82 0.85
EM-NN - - 0.87
MV-NN - - 0.89

Sensitivity

LR 61.4 60.3 61.9
SVM 60.0 61.2 62.7
EM-LR - - 68.1
NN 75.5 76.3 77.7
EM-NN - - 78.5
MV-NN - - 78.8

Specificity

LR 61.0 61.0 61.6
SVM 63.0 60.3 65.0
EM-LR - - 69.7
NN 76.5 77.0 77.7
EM-NN - - 78.3
MV-NN - - 78.7

3.2. Classification Results

We evaluated algorithm performance using Receiver Operator
Characteristic (ROC) curves, by calculating the area under the
curve (AUC) and using the classification accuracy, sensitivity
and specificity measures. The results were computed using
10-fold cross validation. In this experimental set-up there is
a complete isolation of the test set from the train set. Each
fold was only used for testing and never for training. We thus
ensured that no bias was introduced.

Table 1 shows classification results for the six classifiers
described above, and Fig. 3 shows the corresponding ROC
curves. As can be seen from the classification results, the
proposed MV-NN approach outperformed all other methods.
Table 1 shows that for all methods taking two-views instead
of a single view improved performance. Table 1 also indi-
cates that methods based on deep architecture significantly
outperformed SVM and LR. Of the NNs the standard imple-
mentation was the worst. The two multi-view NNs we intro-
duced in this work, namely EM-NN and MV-NN, obtained
the best results. Comparison of these two view-integration
methods showed that MV-NN was better. We performed a
t-test on the AUC values of the benchmark models and the
MV-NN and EM-NN models. The input to the t-test con-

Fig. 3: ROC curves of the six classifiers. All classifiers used
both CC and MLO data.

sisted of AUC samples taken from 10-fold cross validation of
both models [20]. The t-test examined the hypothesis that the
two groups of AUC values came from the same distribution
given the mean and standard deviation of the AUCs (taken
from the 10-fold cross validation experiments). All the hy-
potheses were successfully rejected with a p-value< 0.01 and
a confidence interval of 99%, which indicates that the AUCs
of MV-NN were significantly higher than the AUCs of the
benchmarks. In addition, we performed a t-test between the
MV-NN accuracy, sensitivity and specificity vs. the bench-
marks using the procedure described above, achieving for all
a p-value < 0.01 with a confidence interval of 99%.

When classifying benign versus malignant clusters of
MCs using the DDSM dataset, Pereira et al. [10] reported
an AUC=0.607. The best feature for classifying MCs in
Andreadis et al. [11] achieved ACC=70.14% (AUC=0.776)
for fatty tissues and ACC=60.83% (AUC=0.636) for dense
tissues, and Moura et al. [12] achieved AUC=0.776. Our
MV-NN (using Curvelet rotation invariant features) achieved
significantly better results (ACC=78.7%,AUC=0.89) than
these studies.

To conclude, in this paper we introduced and evaluated
two neural network architectures, MV-NN and EM-NN, to
classify breast MCs based on the CC and MLO views. We
showed that a special-purpose NN architecture yields better
results than the standard NN and overall the results we ob-
tained were significantly better than those reported in previ-
ous studies.
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